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S.-J. Lin 

Outline: 
•  What is a (finite-volume) “dynamical core” ? 
•  Fundamentals of the FV core 

•  The multi-dimensional algorithm (Lin and Rood 1996) 
•  Shallow water formulation (Lin and Rood 1997) 
•  Finite-Volume algorithm for computing pressure gradient (Lin 1997) 
•  The vertically Lagrangian finite-volume discretization 
•  The non-hydrostatic solvers (RIM and SIM) 

•  Why do we choose the cubed-sphere grid ? 
•  The “island preserving” terrain filter 
•  Nonlinear test cases 
•  Two variable resolution options (stretched and nested grids) 

GFDL 2012 Summer School 
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Hydrostatic balance 

Mass conservation: 

Momentum equations: 

1st law of thermodynamics: 

Governing equations of a hydrostatic finite-volume model 

The 4 dotted red boxes (S, Fu, Fv, 
and H) represent “Physics” and/
or the “Chemistry”; the rest are 
“dynamical core” 



Finite Volume algorithms are built on  
3 basic integral theorems 

  Divergence theorem: for constructing the flux-form advection operator 

  Stokes theorem: for vorticity computation 

  Green’s theorem: for computing pressure gradient 

(Lin 1997, QJ) 

  

€ 

∇⋅ ρq
 

V ( ) ds
S∫∫ = ρq

L∫
 

V ⋅  n dl

  

€ 

∇ ×
 

V ( )⋅ d s 
S∫∫ =

 
V ⋅  σ ( ) dl

L∫

€ 

∂P
∂x

ds
S∫∫ = P

L∫ dx



Minimal reading list for the FV algorithms: 

1.  Advection (transport) process:  Lin and Rood 1996, Mon. Wea. Rev. 

2.  Shallow water dynamical framework: Lin and Rood 1997, QJ. 

3.  Pressure gradient in general vertical coordinate: Lin 1997, QJ. 

4.  Vertical discretization: Lin 2004, Mon. Wea. Rev. 

5.  Cubed-sphere geometry: Putman and Lin 2007, JCP. 

6.  Two-way regional-global nesting: Harris and Lin 2012, Mon. Wea. Rev. 

7.  *Non-hydrostatic solvers*:  Lin (manuscript; hopefully 2012) 



Physically based advection scheme 
(Lin & Rood 1996, MWR) 

1D transport by “shifting” the 
finite-volume mean grid 

structure (resolved + subgrid) 



Piece-wise constant distributions are 
constructed using only one finite-volume mean 

classical upwind scheme: 1st order accurate 



Piece-wise linear distributions are constructed 
using 3 finite volumes 

van Leer-type schemes: 2nd order accurate 
(Lin et al, 1994, MWR) 



Piece-wise parabolic subgrid distributions 
can be constructed using only 5 finite volumes 

Piecewise Parabolic method (PPM): 3rd or 4th order  accurate 
(Colella and Woodward 1984, JCP; Lin and Rood 1996, MWR) 



4th order center difference 

(mathematically based) 

Monotonic PPM 

(physically based) 

exact 
solution 

1D Advection: mathematically vs. physically based schemes 

(Lin and Rood 1996, MWR) 



The “ABC” (and D) of wind-vector staggering 

A A B 

C D 

•  pressure gradient 

•  divergence 

•  coriolis force 

•  (absolute) vorticity advection 
(nonlinearity) 

•  coupling to physics & ocean 

Issues to consider: 



A freshman’s guide on Grid staggering: 
0: best   1: average  2: worst 

(assuming 2nd order center difference) 
Grid type A B C D 

Pressure Grad 1 1 0 2 

Divergence 1 1 0 2 

Coriolis force 0 0 2 0 (or 2) 

vorticity 1 1 2 0 

Time step size* 1 2 2 1 

Phys-dynamics 
coupling 

0 2 1 1 

Equal weighting 
sum 

4 7 7 6 (or 8) 

Note: higher order scheme can be used for critical operations 



More notes on grid staggering: 

•  Based solely on conventional linear shallow-water-wave analysis (e.g., Messinger 
and Arakawa 1977, GARP monograh), it has been declared by some that “C grid is 
the best”. However, the (vector wind) staggering is neither important nor relevant if 
a higher-order spatial discretization or a Riemann-solver approach is used (in the 
latter case one shall not stagger the prognostic variables) 

•  Under the assumption of  2nd order center differencing (as in conventional analysis), 
D grid is indeed the worst grid for divergence and pressure gradient computation. 
But most people do not realize that C grid is the worst grid for Potential Vorticity 
(PV) advection and Coriolis force computation and it requires the smallest time 
step; whereas D grid is the best choice if the PV advection approach (Lin and Rood 
1997) can be adopted. 

•  In choosing grid staggering, non-linear behavior (in particular, vorticity/PV 
advection) has often been overlooked! 

•  The grid staggering issue gets more complicated  in the more general (non-
orthogonal) curvilinear coordinate system 

•  What is a good compromise between C and D grids? Answer: try to combine their 
strength while avoiding their weakness 



Horizontal discretization 
The two-grid Approach (Lin and Rood 1997, QJ) 

•  The two-grid approach is designed to transport mass and absolute 
vorticity consistently (therefore, PV). It also avoids the generation of 
two-grid length gravity waves. 

•  The time-centered winds (u*,v*) are integrated on the C-Grid for half-
time-step 

•  The time-centered winds are then used for the transport of the 
vorticity and all scalars on the D-Grid 

C-Grid D-Grid 

h u* u* 

v* 

v* 

Ωv v 

u 

u 



Vertically Lagrangian Control-Volume 
Discretization 

• Horizontally Eulerian (Lin and Rood 1996) 

• Vertically Lagrangian control-volume 
discretization (Lin 2004) 
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IPCC AR4 models 

IPCC AR5 models 

Models under 
construction 



The traditional latitude-longitude grid is not 
suitable for ultra-high resolution modeling 

•  The existence of two polar 
singularities prevented effective 2D 
domain decomposition 

•  The extreme grid aspect ratio at 
poles poses a scientific difficulty for 
non-hydrostatic dynamical core 
formulation 



coneflower C-60 Geodesic dome Yin-Yang 

CCSR Dec 7, 2007 

coneflower Yin-Yang Hexahedron/cube 
C60 

 (1996 Nobel chemistry price) 

Icosahedron (Plato, 
~ 400 BC) 

The search for the optimal 
grid on the sphere 

Fibonacci grid Cubed-sphere grid Yin-Yang grid 
Geodesic grid 



Formulating the geophysical flow equations on the sphere 

Spherical coordinate: orthogonal,  extreme grid aspect 
ratio with two singularities; not suitable for high-resolution 

Icosahedral grid: non-orthogonal,  most uniform grid 
aspect ratio with no true singularity (but with 12 
pentagons) 

Cubed sphere: slightly non-orthogonal,  good grid aspect 
ratio with 8 minor singularities (corners) 



An equal-distance Gnomonic Cubed Sphere grid 

Commonly used resolution at GFDL: 

 C2000, Δx = [3.92,  5.55] ~ 4.5 km 

 C360  , Δx ~ 25 km 

 C180  , Δx ~ 50 km 

 C90    , Δx ~ 100 km 

 C48    , Δx ~ 200 km 

•  Defined by intersects of great circles with equal-
distance along 12 edges 

•  Maximum local grid aspect ratio ~ 1.061 

•  Maximum global grid aspect ratio ~ 1.414 

Hurricane in a doubly 
periodic box 

Can also be used as a regional model 



Cubed-sphere vs icosahedral grid 

+  
Grid uniformity/aspect 

ratio 
(time stepping efficiency) 

~ 0.7 
(Gnomonic grids) 

0.7 ~ 0.8 

Wave propagation good potentially better 

Numerics: Advection & 
pressure gradients 

High-order FV scheme 
developed & 
implemented 

High-order FV scheme 
much more difficult to 

implement 
Parallel efficiency Potentially better good 

Grid nesting Straightforward difficult 
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*hydrostatic 

Solved by either a Riemann Invariant Method (RIM) OR a Semi-Implicit Method (SIM) 



Non-hydrostatic solvers 

•  Semi Implicit Method (SIM) 
–  4th order finite-volume discretization 
–  Stable for arbitrary time step size 
–  Best for mid- to low resolution (100 km to 5 km) 

•  Riemann Invariant Method (RIM) 
–  Based on conservation of Riemann invariants with 

open (for sound waves) top boundary condition 
–  Fully explicit; conditionally stable (up to CFL ~ 100 in 

the PBL) 
–  Suitable for cloud-resolving resolution ( < 5 km) 



The finite-volume dynamical core enables the 
development at GFDL of a unified regional-global 
weather-climate modeling system suitable for all 

temporal-spatial scales 

Examples: 
  Simulations of TC climatology and response to warming scenarios 

(50km, Zhao et al. 2009) 
  IPCC AR5 high-res time-slice versions (200, 50, and 25 km) 
  TC seasonal predictions (25km; Chen and Lin 2011) 
  Intra-seasonal TC predictions (25 km, Gall et al 2010) 
  5-10 day hurricane predictions (HFIP; 10 ~ 25 km) 
  Global “cloud-resolving” experiments (3.5 km) 
  Regional cloud-resolving radiative-convective equilibrium (1 km 

and 500m) 



Nonlinear interaction of Rankine vortices 

IC: Two pairs of anti-symmetrical Rankine vortex embeded in motionless “shallow water” 



Island preserving terrain filter in GFDL cubed-sphere models 

•  Flux-form diffusive filter with fluxes set to zero if either side of 
the FV cell is covered completely by water 

•  Diffusive fluxes are designed to mainly filter out un-resolvable 
structures (2-delta-waves). 



USGS 1-min 

Raw 1x1  

Filtered 1x1 

Filtered - Raw 



DJF precipitation in Western US: 
GFDL models vs. PRISM 

PRISM 

(obs) 

50-km 
GFDL 
HiRAM 

12.5-km 
GFDL 
HiRAM 

GFDL AM2 
(220 km) 



GFDL ‘s plans for ultra-high resolution global “regional climate model” 

A.  Nested regional-global climate model: 
•  3X grid-size reduction; regional 

component can be run independently 
(for down-scaling) or coupled with 
global component to allow feedback to 
“global” changes 

B.  Variable resolution (via Schmidt 
transformation) climate model 
•  Single model framework with smooth 

transition in resolution with 3X grid-
size reduction in target region (e.g., NA 
with ~ 4 km resolution); 3X 
enlargement on the back side 



Aqua-planet test (HiRAM_MP) 

110 km 



Aqua-planet: surface vorticity 
C256-Stretched (12 km – 110 km) 



Annual mean precipitation 

Aqua-planet with September SST 
Variable resolution: 12 km – 110 km 

total =3.5, LS=3.0 (mm/day) 



Final notes: 
Some unique properties of a consistently formulated finite-

volume dynamical core 

•  With the vertically Lagrangian discretization, condensate loading 
effect is easy to implement, and there is no vertical CFL condition 

•  Dry air and tracer mass are conserved, and an initially constant tracer 
mixing ratio will remain constant 

•  In shallow water mode, PV is advected exactly the same as any other 
tracers. Since the advection is monotonic, no false PV gradient will be 
created in uniform PV region. In contrast, with a pure C grid 
formulation height field and absolute vorticity evolve differently, 
leading to inconsistent PV advection (the situation is much worse if 
time-splitting is used, e.g., some cloud resolving models based on C 
grid) 

•  On a non-rotating planet (or a Cartesian geometry), an initially 
irrotational flow (vorticity=0) will remain irrotational (i.e., no false 
vorticity generation) with the FV core (not so with other models) 


